

MacPoll Zero Gas

Requirements from EN Air Quality Standards

Theo Hafkenscheid RIVM-MIL NL – BILTHOVEN

Overview of presentation

- CEN/TC264 Air Quality
- Uses of zero gases
- Requirements for zero gases
- Current practice
- Conclusions

European Committee for Standardization Comité Européen de Normalisation Europäisches Komitee für Normung

CEN/TC 264 Air Quality

http://www.cen.eu/cen/Sectors/TechnicalC ommitteesWorkshops/CENTechnicalCom mittees/Pages/TCStruc.aspx?param=6245 &title=CEN/TC%20264

CEN/TC 264 Air Quality

- Standardization of methods for air quality characterization of
 - Emissions into air
 - Ambient air
 - Indoor air
 - Gases in and from the ground
 - Deposition
 - Measurement methods for air pollutants (particles, gases, odours, micro organisms)
 - Methods for the determination of the efficiency of gas cleaning systems.

CEN/TC 264 Air Quality

- Established in 1990
- Currently 27 active Working Groups and 1 Task Force
- Zero gases highly relevant for standards of TC 264
 - Most stringent requirements for measurements of gases in ambient air (low ppb concentration levels)

Zero gas

Applications of zero gases

- CEN/TC 264 WG12
 - Has produced 5 (draft) standards for measurement of gases (NOx, SO₂, O₃, CO, C₆H₆)
- Each standards contains sections on
 - Type approval of monitoring equipment
 - QA/QC of measurements (calibrations, checks)
- For both zero gases are required
 - For zero calibrations and checks
 - For dilution of high concentration calibration gas, span gas and test gases

Applications of zero gases

- Zero gas may be from
 - Cylinders
 - Zero-air generators
- Quality of zero gases shall not adversely affect results of tests, checks and calibrations
 - Each standard contains purity requirements for zero gases
- Zero gases in the field shall be checked against independent standard gases

Applications of zero gases

- Zero gases are used by
 - Laboratories performing type-approval tests of monitoring equipment
 - Calibration laboratories of air quality monitoring networks
 - Field operators of air quality monitoring networks
- Under different environmental conditions

Example: NOx

Pollutant	Concentration
CO ₂	≤ 4,0 µmol/mol
O_3	≤ 2,0 nmol/mol
NH_3	≤ 1,0 nmol/mol
Water vapour	≤ 150 µmol/mol
NO	≤ 1,0 nmol/mol
NO ₂	≤ 1,0 nmol/mol

Type-approval testing of interferences

Pollutant	Concentration	1
CO ₂	≤ 400 µmol/mol	
O_3^{-}	≤ 2,0 nmol/mol	
NH_3	≤ 10 nmol/mol	
Water vapour	≤ 150 µmol/mol	
NO	≤ 1,0 nmol/mol	
NO_2	≤ 1,0 nmol/mol	

Other type-approval tests

Requirements for zero gases

- Preferably one zero gas for laboratory applications and one for field applications
 - Laboratory gas to be used as transfer standard for field checks
- Should combine all purity requirements !
- Should have levels of impurities certified!

Requirements for lab gas

Requirement	Component(s)
≤ 1 nmol/mol	NH ₃ , NO, NO ₂ , SO2, xylenes, O ₃ , toluene
≤ 0,1 µg/m³	Benzene
≤ 1 µg/m³	Sum of interferents of benzene
≤ 0,5 nmol/mol	N ₂ O
≤ 0,1 µmol/mol	H ₂ S, CO
≤ 4,0 µmol/mol	CO ₂
≤ 150 µmol/mol	H ₂ O

Requirements for other zero gases

Requirement	Component(s)
≤ 1 nmol/mol	NO, NO ₂ , SO ₂ , xylenes, O ₃ , toluene
≤ 10 nmol/mol	NH ₃
≤ 0,1 µg/m³	Benzene
≤ 10 µg/m³	Sum of interferents of benzene
≤ 0,5 nmol/mol	N ₂ O
≤ 0,1 µmol/mol	H ₂ S, CO
≤ 400 µmol/mol	CO ₂
≤ 150 µmol/mol	H ₂ O

Requirements for zero gases

- 2012 WG12 standards allow for use of monitors with different ranges (generally lower) when type approved
 - Requirements for zero gases should be scaled accordingly!
- CEN/TC 264 WG12 will produce a standard for measurement of ozone precursors
 - Need for stringent requirements for levels of interferents!

- Most networks and laboratories use zeroair generators
 - "Unlimited" supply of zero air
 - Substantial choice of manufacturers
- Quite different specifications
 - Sometimes qualitative
 - < 0,1 ppb, < 0,5 ppb, < 1 ppb for NOx, SO₂, CO,
 O₃
 - Sometimes information for other components (e.g., THC)
 - ▶ Sometimes information for H₂O

- Zero air in cylinders with appropriate specifications are scarce
 - Mostly aimed at use as GC FID gas
- When levels are given, how are these measured?
 - What equipment ?
 - How calibrated ?
 - Calibration standards with traceable compositions?

- Most networks and laboratories are unable to do (im)purity checks/determinations
 - Other than below limit of detection of own equipment
- Rely on manufacturer's specifications
 - Supported by information on maintenance
- Attempt to find supporting evidence from inter-laboratory comparisons

Conclusions

Conclusions

- EU Standards for measurement of gaseous air pollutants contain stringent requirements for purities of zero gases
- Users rely on specifications of procucers of generators or cylinder zero gas
- If given, it is unclear how these specifications are determined
- Users have little or no means to determine qualities of zero gases themselves

Conclusions

- Need for (network of) institutes capable of testing/certifying zero gases at required specifications
 - Gas metrology laboratories ?
 - National Reference Laboratories for air quality monitoring?
 - Common, harmonized methods and calibration standards?
- Need for comparisons of zero gases

Questions

- Are such low levels of impurities measurable?
- If so, by whom?
 - Gas metrology laboratories ?
 - Producers ?
 - What should monitoring networks do ?
- If so, at what costs?
- Will costs be balanced by benefits ?
 - Would require studies into effects of using "old" and "new" technology zero gases

Thank you!